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Definition: n-Manifold M

@ separable, metric space

Figure: Interior point: neighborhoods
homeomorphic to R".

(Xo, y09 ZO)

Figure: Boundary point: neighborhoods
homeomorphic to R} .
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@ separable, metric space
@ neighborhoods homeomorphic to R"
o R}
@ OM =the boundary of M
(the R's )

e int(M )=the interior of M
(the R™'s)
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Definition: n-Manifold M

Figure: Interior point: neighborhoods
homeomorphic to R".

Figure: Boundary point: neighborhoods
homeomorphic to R} .

Cardona, Montoya (UPR)

separable, metric space

@ neighborhoods homeomorphic to R"
o R}

@ OM=the boundary of M
(the R's )

o int(M)=the interior of M
(the R™'s)

@ closed=connected, compact and no
border
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Some results for n=2, 3

Theorem (M. Dehn and P. Heegaard 1907; H.R. Brahana, 1921)

Every compact surface (closed 2-manifold) is homeomorphic to:
Q a sphere S? or
© a connected sum of tori Tf#Tf# o #T,f , Or

© a connected sum of projective planes Pf# P4 - - #P¢.
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Some results for n=2, 3

Theorem (M. Dehn and P. Heegaard 1907; H.R. Brahana, 1921)

Every compact surface (closed 2-manifold) is homeomorphic to:
@ a sphere S?, or
© a connected sum of tori Tf#TZQ# o #T;f , Or

© a connected sum of projective planes Pf# P4 - - #P¢.

Theorem (H. Kneser 1929; J. Milnor, 1962)

Let M be an orientable, closed 3-manifold. Then M has a decomposition

M = My# Mo - - - # My,

where each M; is prime. The collection {M;} is unique, except for the order of
the factors.
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Some results for n=2, 3

Theorem (W. Jaco and P. Shalen 1979; K. Johannson, 1979)

Let M be an orientable, irreducible, closed 3-manifold. Then there is a finite and
disjoint collection of incompressible tori T C M that separates M into a finite
collection of compact 3-manifolds whose boundary consist of tori and each of
which is a Seifert fibered space or atoroidal. Furthermore, the minimal such
collection of tori is unique up to isotopies.
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Theorem (W. Jaco and P. Shalen 1979; K. Johannson, 1979)

Let M be an orientable, irreducible, closed 3-manifold. Then there is a finite and
disjoint collection of incompressible tori T C M that separates M into a finite
collection of compact 3-manifolds whose boundary consist of tori and each of
which is a Seifert fibered space or atoroidal. Furthermore, the minimal such
collection of tori is unique up to isotopies.

Theorem (W. Thurston 1980)

There are exactly eight model geometries for 3-manifolds. Namely:
Q §° Q@ H°x E*

Q F’ Q@ SL(2,R)

Q H’ Q@ Nil

Q@ S°x E' Q Sol.

y
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G. Perelman results 2002, 2003

Theorem (Hyperbolization)

Let M be an orientable, closed, prime 3-manifold. If w1 (M) is infinite and M is
atoroidal then M is hyperbolic.
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G. Perelman results 2002, 2003

Theorem (Hyperbolization)

Let M be an orientable, closed, prime 3-manifold. If w1 (M) is infinite and M is
atoroidal then M is hyperbolic.

Theorem (Elliptization)

Let M be an orientable, closed, prime 3-manifold. If w1(M) is finite then M is
spherical.

Theorem (Geometrization)

Let M be an orientable, closed, prime 3-manifold. Then there is a finite and
disjoint collection of tori {Tf} embedded in M, such that each component of

M — {U Tf} admits a geometric structure.

|_||=||—|—|=J|
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Definition

Definition (Knot)

A knot K is an embbedding (p.l. or
smooth) of K : S* — S”(or R?).
More generally a knot K Is an
embbedding of K : S? — 8™, It is
common practice to write K for the
image K (S*), or for the image
moK(S'), wherem : R®> — P is a
projection onto some plane P. Figure: Trefoil projection.
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Reidemeister and A-moves

9 /\ \\
\/ /\/

Typel Type Il Type 111

Figure: Reidemeister moves. Figure: A-moves.
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Equivalence of equivalences

Let Ky, K1 be p.l.-knots in S°. The following are equivalent:

@ There is an orientation preserving homeomorphism h : S® — S which
carries Koy onto K1, h(Ky) = K.

Q@ K,y and K, are ambient isotopic.
© Ky and K, are isotopic by finitely many A-moves.

Q@ Ky and K, are isotopic by finitely many Reidemeister moves.
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Equivalence of equivalences

Let Ky, K1 be p.l.-knots in S°. The following are equivalent:

@ There is an orientation preserving homeomorphism h : S® — S which
carries Koy onto K1, h(Ky) = K.

Q@ K,y and K, are ambient isotopic.

© Ky and K, are isotopic by finitely many A-moves.

Q@ Ky and K, are isotopic by finitely many Reidemeister moves.

Theorem (Lickorish-Wallace 1960, 1962, 1963)

Let M be an orientable, closed, connected 3-manifold. Then M is obtained by
surgery on some link K in S°.
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Can you detect the unknot?
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Knots with less than 9 crossings

06V RL

BB LBD
HYedeess88d
SBRERE &S
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Pretzel knot P(£l, +m, 4+n)

Helpl®

=+l +m +n +1 [ crossings < —1 [ crossings <

O 00
Do as

U

Figure: The pretzel knot P(+l,£+m,+n) with I, m,n > 0.
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Pretzels |

N'\/'\z’\’y

e

Figure: P(—2,3,7).

Figure: P(4,7,4).
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Pretzels ||

N

s(V)=A s(v)=B

Figure: Markers at a crossing v of D and their corresponding smoothing.

— > < —
Y > Qe 9P S = = <
Y o9 g p < = = =

U Uy Uy cUUxs

Figure: P(2,3,2) and its S4 and Sp EKS's. T | ol el —
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Pretzels ||

The following knots up to 9 crossings are three column pretzels. See [Diaz,
Manchén].

31 =P(1,1,1)  74=P(3,1,3) 05 = P(1,1,7)
4, = P(1,1,2) 8 = P(1,1,6) 05 = P(1,—4,5)
5, = P(1,1,3) 8 = P(1,2,5) 0, = P(1,—5,4)
6 = P(1,1,4) 8, = P(1,3,4) 95 = P(1,3,5)
6, = P(1,2,3) 85 = P(2,3,3) 935 = P(3,3,3)
7o =P(5,1,1)  819=P(3,3,-2) 945 = P(3,3,—3)

819 = P(3,3,—2) =T(4,3) and 101954 = P(5,3,—2) =T'(5,3) are three column
pretzel knots that are also torus knots.
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Free Abelian groups |

Given a set T, there is a free Abelian group F' having T as its base. Any two
bases for the free Abelian group F' have the same cardinality.
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Free Abelian groups |

Given a set T', there is a free Abelian group F' having 1" as its base. Any two
bases for the free Abelian group F' have the same cardinality.

Let I' be a free Abelian group with base B.

Q /f G is an Abelian group and ¢ : B — G Is a function, then there is a
unique homomorphism ¢ : F — G with ¢(b) = ¢(b) for all b € B.

AN
AN

. RN
7 N

/

DX
B —*.s@g

@ CEvery Abelian group G is isomorphic to a quotient group of the form F/R,
where F' is a free Abelian group.
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Free Abelian groups Il

Let T'={Q, #, %, &}. The elements of F|T], the free group with base T', have
the form

a=2Q +44# 4+ 3% — & B=3Q—4# 4+ % v = 8Q + 9# + 10% + 11&.
Sumation is done formally, for example
a+ B+ v =130 + 9# + 14% + 10&.
A typical element o of F'|T| has the form
o =n1Q 4+ no# + n3% + ni&

where nq,no,n3,ny are integers. Here F|T| 2 Z ®Z D 7L D 7.
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Free Abelian groups ll|

Kauffman states (KS) for P(1,1,2) = 44

- Wy W

AAAB AABA ABAA BAAA
AABB ABAB ABBA BAAB BABA BBAA
) (R e
@@@ U WU
ABBB BABB BBAB BBBA

e
U

BBBB
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Free Abelian groups IV

Enhanced Kauffman states (EKS) for P(1,1,2) = 44

I

L++ 11+ +
L+ +

AAAA
N + + + 4 +
+ - + - + - + -
-+ -+ - o+ -+
AAAB AABA ABAA BAAA
+ o+ o+
+ o+ -
+ -+
O
-+ o+
— _|_ —
- -+ { + { + { + { + { +
AABB ABAB ABBA BAAB BABA BBAA
+ o+ + o+ + o+ + o+
+ - - - + - + -
-+ -+ -+ -+
ABBB BABB BBAB BBBA
+ o+ o+
+ o+ -
+ -+
+ — —
-+ o+
— + —
- -+
BBBB
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O. Viro's (a, b) bigrading

For each EKS, we define the following:

o(s) = |s7H(A)] —|s1(B)
T(8) = le () -l (=)
— o(s)

b = o(s)+27(S5)

Table: Some generators of the chain groups with the (a, b) grading

S o| T | a b | generator
ABAA+++ | 4 | 3 | 4 | 10 | giyq0)
ABAA+-- | 4 | -1 [ 4 | 2 | g{4o
ABBA+ 0| 1[0 2 |gpo
BAAB- 0 |-1]0 | -2 |ggp_o
BBAA- 0 |-1]0 | -2 | g{_o
BBBB-—- | -4 | -3 | -4 | -10 | g{_4 1)
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Khovanov Homology chain complex |

Let D be an unoriented link diagram and let cr(D) be its crossings set. A
Kauffman state s, of D, is a function s : cr(D) — {A, B}. This function is
understood as an assignment of a marker to each crossing according to the
following illustration:

s(v)=A s(v)=B

Figure: Markers at a crossing v of D and their corresponding smoothing.
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Khovanov Homology chain complex |

An enhanced Kauffman state S of D is a Kauffman state s together with a

function € : Dy — {+, —}, assigning to each circle of D, a positive or a negative
sign.

y
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Khovanov Homology chain complex |

An enhanced Kauffman state S of D is a Kauffman state s together with a

function € : Dy — {+, —}, assigning to each circle of D, a positive or a negative
sign.

y

e e
Frrr++++

+ +
i+t

S
+ + -
+ - 4+
J’___
-+ 4+
_+_
- o+ {+ {+ {+ {+ {+
AABB ABA ABBA BAAB BAB A
+ + o+ + o+ + o+
+ + - + - +
+ -+ - +
BABB BAB A
+ o+ o+
S
+ -+
+__
-+ 4+
_J’__
- - 4+
BB
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Khovanov Homology chain complex |l

(i) The bidegree on the enhanced Kauffman states is defined as the following
set:

Sup(D)=Sup ={S € EKS | a=a(s), b=o(s)+27(S)}.

(i) The chain groups C, (D) = C, 4, are defined to be the free abelian groups
with basis S, (D) = Sap, i.€. Cop = ZSq4- Therefore,

C(D) = 69 Cav(D) is a bigraded free abelian group.

(iii) For a link diagram D we define the chain complex C(D) = {(Cy5,0.)},
where the differential map 0, : Cop — Co—_2 Is defined by

0ap(S) =  (-1)1E5)(S,8)9".

S’ c Sa—Q,b

v

] L H
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Khovanov Homology chain complex |V

The Khovanov homology of the diagram D is defined to be the homology of the

chain complex C'(D):
ker(Oa.p)

Hap(D) = im(Ogt2.p)

Y
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Khovanov Homology chain complex |V

The Khovanov homology of the diagram D is defined to be the homology of the
chain complex C'(D):

ker(Oa.p)
im(aa—kQ,b) |

4
Theorem

Let D be an unoriented link diagram. The homology groups H, (D) are invariant
under Reidemeister moves of second and third type. Therefore, they are invariants
of unoriented framed links. Moreover, the effect of the first Reidemeister move
R, is the shift in the homology, H, p(R1+ (D)) = Hat1p+3(D) and
Hyy(R1-(D)) = Hy—1p—3(D). These groups categorify the unreduced Kauffman
bracket polynomial and are called the framed Khovanov homology groups.

Ha b(D) —

Y

y
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Exact sequences |

Theorem (O. Viro 2002)

The following sequence is exact:

 Horpi1 00 — 2 Ho () — 2 Hy 1y 1 (X)
i . ;
Bai™). » Hoo 164100 ——— Ho0(X) L a—s—1(X) (1)
agonn ) )
(9a5™").,  Hy sy 00— Hy 4y () Be ...
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Exact sequences ||

Theorem (M. M. Asaeda, J. H. Przytycki 2004)

The following sequence is exact:

0 — Hi o 4a(D) %% H; ;(D#Dy) 28 H,_o ;_4(D) — 0

Theorem (M. M. Asaeda, J. H. Przytycki 2004)

The above short exact sequence of homology splits, so we have

H; ;(D#Dp) = Hiyo,j+4(D) ® Hi—3 j—4(D).

D Q) D E D |\ S )
__/C > —C > _/C >
D#Dy, (D#Dp)o (D#Dh)os

| — | )
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Diagonals property

Theorem (E.S. Lee 2002)

For any alternating knot L, the Khovanov invariants H"’ (L) of L are supported
in two lines

j=2%—c(L)£1,

where o (L) is the signature of L.

Since the classical Khovanov cohomology 7—[”(1_';) and the framed version of KH
H, (L), are related by the following equalities:

w—a 3w—b>b

HI(L) = Hy—2i302;(L) = Hop(L) =H 2z "2 (L),

where w(L) = w is the writhe of the oriented link diagram L, in terms of the
framed version of KH and the (a, b) grading, these supporting lines are

b=2a+w(L)+20(L) £2.
| — | g e =—
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KH of the knot 4, = P(1,1,2)
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KH of the knot P(1,1,7
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KH of the knot P(1,1,7

1se P116 &
j=-19 b=11 0 ) v
]:—17 b="1T /’/ Z Z s
j=-15 b=3 Z DLy J/ J
1= _5 . // //
j=-13  b=-1 L Z &Ly yA
, . 1= _3 s s
j=—11 b=—5 o 7 O Loy Z .
// , ’ 7/: —1 , ’
j=-9  b=-9 Z 3 7o Z .
Manually & T28 & T27 «— | A i=1
j=-7 b=-13 L7 YA yA o
j=-5 b=-17 . Zs z
j=-3 b=-21 v/ Z ,’
j=-1 b=-25 7 .
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KH detects the unknot

Khovanov homology detects:

@ the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
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KH detects the unknot

Khovanov homology detects:

@ the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
@ the trefoils (J. A. Baldwin and S. Sivek, 2018)
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KH detects the unknot

Khovanov homology detects:

@ the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
@ the trefoils (J. A. Baldwin and S. Sivek, 2018)
@ the Hopf links (J. A. Baldwin, S. Sivek, Y. Xie, 2018)
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KH detects the unknot

Khovanov homology detects:

@ the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
@ the trefoils (J. A. Baldwin and S. Sivek, 2018)
@ the Hopf links (J. A. Baldwin, S. Sivek, Y. Xie, 2018)

@ the figure 8 knot 4, = P(1,1,2) (J. A. Baldwin, N. Dowlin, A. S. Levine, T.
Lidman, R. Sazdanovic, 2020)
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XXXX !

Thanks for you time.
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