

# Khovanov Homology of the $P(\pm l, m, n)$ pretzel links

## $\text{KH}$ of $P(\pm l, m, n)$ pretzels

Iván Cardona Torres<sup>1</sup>   Gabriel Montoya-Vega<sup>2</sup>

<sup>1</sup>University of Puerto Rico at Río Piedras

<sup>2</sup>The Graduate Center CUNY, NY  
University of Puerto Rico at Río Piedras

40<sup>th</sup> SIDIM, March 8, 2025



# Table of Contents

## 1 n-Manifolds

- Definition
- Results in low dimension (n=2, 3)
- Grigori Perelman

## 2 Knot theory

- Definition
- Equivalence of Knots
- Knot Table
- Pretzel knots

## 3 Khovanov homology (KH)

- Free Abelian groups
- Khovanov Homology chain complex
- KH long exact sequence
- KH of the knot  $P(1, 1, 7)$

# Table of Contents

## 1 n-Manifolds

- Definition
- Results in low dimension (n=2, 3)
- Grigori Perelman

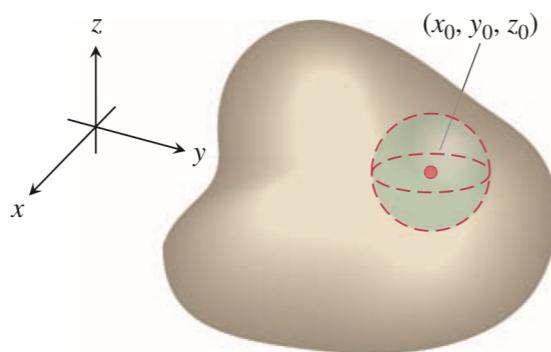
## 2 Knot theory

- Definition
- Equivalence of Knots
- Knot Table
- Pretzel knots

## 3 Khovanov homology (KH)

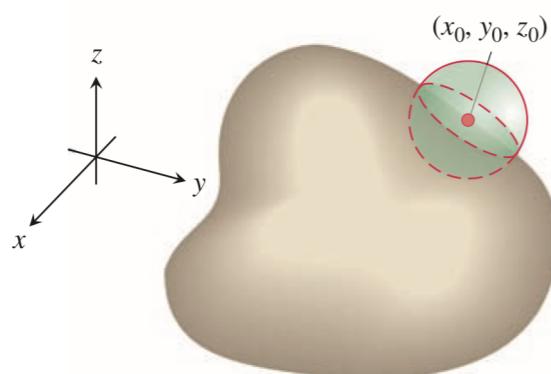
- Free Abelian groups
- Khovanov Homology chain complex
- KH long exact sequence
- KH of the knot  $P(1, 1, 7)$

# Definition: n-Manifold $M$



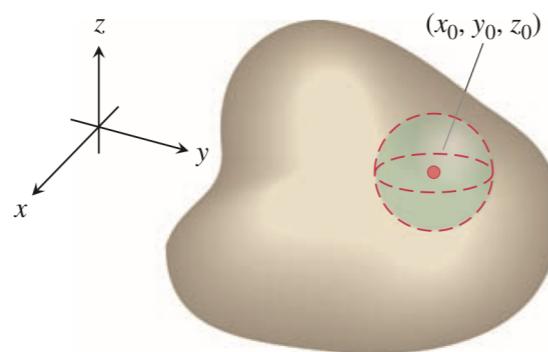
- separable, metric space

**Figure:** Interior point: neighborhoods homeomorphic to  $\mathbb{R}^n$ .



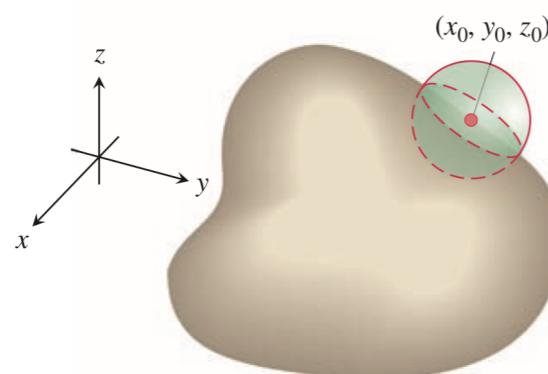
**Figure:** Boundary point: neighborhoods homeomorphic to  $\mathbb{R}_+^n$ .

# Definition: n-Manifold $M$



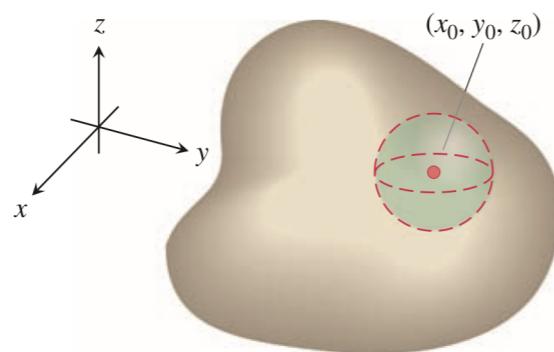
**Figure:** Interior point: neighborhoods homeomorphic to  $\mathbb{R}^n$ .

- separable, metric space
- neighborhoods homeomorphic to  $\mathbb{R}^n$ 
  - $\mathbb{R}_+^n$



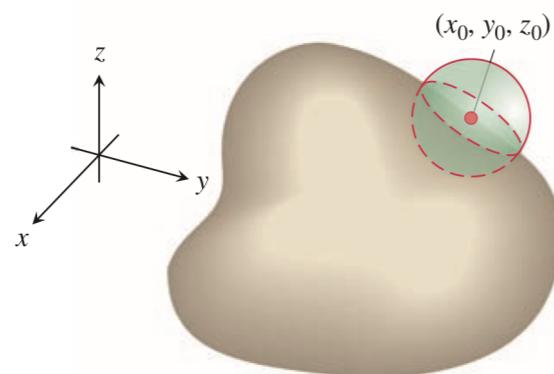
**Figure:** Boundary point: neighborhoods homeomorphic to  $\mathbb{R}_+^n$ .

# Definition: n-Manifold $M$



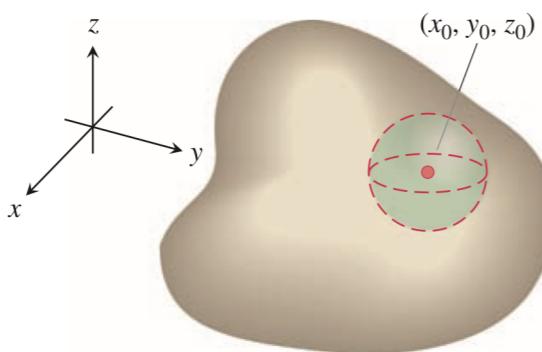
**Figure:** Interior point: neighborhoods homeomorphic to  $\mathbb{R}^n$ .

- separable, metric space
- neighborhoods homeomorphic to  $\mathbb{R}^n$ 
  - $\mathbb{R}_+^n$
- $\partial M$ =the boundary of  $M$   
(the  $\mathbb{R}_+^n$ 's )



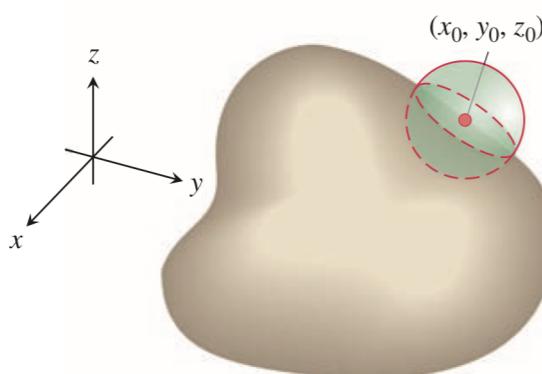
**Figure:** Boundary point: neighborhoods homeomorphic to  $\mathbb{R}_+^n$ .

# Definition: n-Manifold $M$



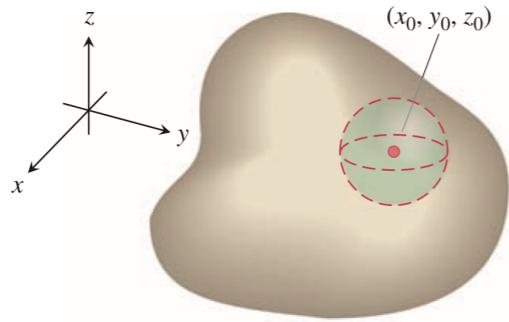
**Figure: Interior point: neighborhoods homeomorphic to  $\mathbb{R}^n$ .**

- separable, metric space
- neighborhoods homeomorphic to  $\mathbb{R}^n$ 
  - $\mathbb{R}_+^n$
- $\partial M$ =the boundary of  $M$   
(the  $\mathbb{R}_+^n$ 's )
- $\text{int}(M)$ =the interior of  $M$   
(the  $\mathbb{R}^n$ 's)



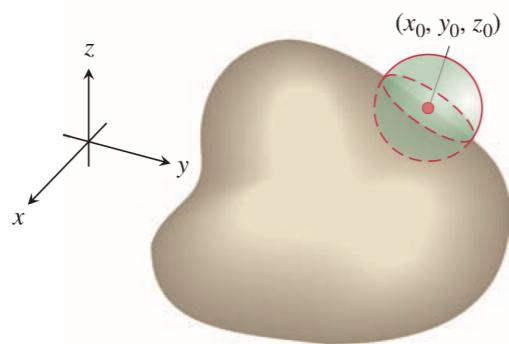
**Figure:** Boundary point: neighborhoods homeomorphic to  $\mathbb{R}_+^n$ .

# Definition: n-Manifold $M$



**Figure:** Interior point: neighborhoods homeomorphic to  $\mathbb{R}^n$ .

- separable, metric space
- neighborhoods homeomorphic to  $\mathbb{R}^n$ 
  - $\mathbb{R}_+^n$
- $\partial M$ =the boundary of  $M$   
(the  $\mathbb{R}_+^n$ 's )
- $\text{int}(M)$ =the interior of  $M$   
(the  $\mathbb{R}^n$ 's)
- closed=connected, compact and no border



**Figure:** Boundary point: neighborhoods homeomorphic to  $\mathbb{R}_+^n$ .

### Theorem (M. Dehn and P. Heegaard 1907; H.R. Brahana, 1921)

Every compact surface (closed 2-manifold) is homeomorphic to:

- ① a sphere  $S^2$ , or
- ② a connected sum of tori  $T_1^2 \# T_2^2 \# \cdots \# T_k^2$ , or
- ③ a connected sum of projective planes  $P_1^2 \# P_2^2 \# \cdots \# P_k^2$ .

## Some results for $n=2, 3$

Theorem (M. Dehn and P. Heegaard 1907; H.R. Brahana, 1921)

Every compact surface (closed 2-manifold) is homeomorphic to

- ① a sphere  $S^2$ , or
- ② a connected sum of tori  $T_1^2 \# T_2^2 \# \dots \# T_k^2$ , or
- ③ a connected sum of projective planes  $P_1^2 \# P_2^2 \# \dots \# P_k^2$ .

Theorem (H. Kneser 1929; J. Milnor, 1962)

Let  $M$  be an orientable, closed 3-manifold. Then  $M$  has a decomposition

$$M = M_1 \oplus M_2 \oplus \dots \oplus M_k,$$

where each  $M_i$  is prime. The collection  $\{M_i\}$  is unique, except for the order of the factors.

### Theorem (W. Jaco and P. Shalen 1979; K. Johannson, 1979)

Let  $M$  be an orientable, irreducible, closed 3-manifold. Then there is a finite and disjoint collection of incompressible tori  $T_i^2 \subset M$  that separates  $M$  into a finite collection of compact 3-manifolds whose boundary consist of tori and each of which is a Seifert fibered space or atoroidal. Furthermore, the minimal such collection of tori is unique up to isotopies.

### Theorem (W. Jaco and P. Shalen 1979; K. Johannson, 1979)

Let  $M$  be an orientable, irreducible, closed 3-manifold. Then there is a finite and disjoint collection of incompressible tori  $T_i^2 \subset M$  that separates  $M$  into a finite collection of compact 3-manifolds whose boundary consist of tori and each of which is a Seifert fibered space or atoroidal. Furthermore, the minimal such collection of tori is unique up to isotopies.

### Theorem (W. Thurston 1980)

There are exactly eight model geometries for 3-manifolds. Namely:

- ➊  $S^3$
- ➋  $E^3$
- ➌  $H^3$
- ➍  $S^2 \times E^1$
- ➎  $H^2 \times E^1$
- ➏  $\widetilde{SL(2, \mathbb{R})}$
- ➐  $Nil$
- ➑  $Sol.$

## Theorem (Hyperbolization)

Let  $M$  be an orientable, closed, prime 3-manifold. If  $\pi_1(M)$  is infinite and  $M$  is atoroidal then  $M$  is hyperbolic.

## Theorem (Hyperbolization)

Let  $M$  be an orientable, closed, prime 3-manifold. If  $\pi_1(M)$  is infinite and  $M$  is atoroidal then  $M$  is hyperbolic.

## Theorem (Elliptization)

Let  $M$  be an orientable, closed, prime 3-manifold. If  $\pi_1(M)$  is finite then  $M$  is spherical.

## Theorem (Hyperbolization)

Let  $M$  be an orientable, closed, prime 3-manifold. If  $\pi_1(M)$  is infinite and  $M$  is atoroidal then  $M$  is hyperbolic.

## Theorem (Elliptization)

Let  $M$  be an orientable, closed, prime 3-manifold. If  $\pi_1(M)$  is finite then  $M$  is spherical.

## Theorem (Geometrization)

Let  $M$  be an orientable, closed, prime 3-manifold. Then there is a finite and disjoint collection of tori  $\{T_i^2\}$  embedded in  $M$ , such that each component of  $M - \{ \bigcup T_i^2 \}$  admits a geometric structure.

# Table of Contents

## 1 n-Manifolds

- Definition
- Results in low dimension (n=2, 3)
- Grigori Perelman

## 2 Knot theory

- Definition
- Equivalence of Knots
- Knot Table
- Pretzel knots

## 3 Khovanov homology (KH)

- Free Abelian groups
- Khovanov Homology chain complex
- KH long exact sequence
- KH of the knot  $P(1, 1, 7)$

### Definition (Knot)

A knot  $K$  is an embedding (p.l. or smooth) of  $K : S^1 \rightarrow S^3$  (or  $\mathbb{R}^3$ ). More generally a knot  $K$  is an embedding of  $K : S^p \rightarrow S^q$ . It is common practice to write  $K$  for the image  $K(S^1)$ , or for the image  $\pi \circ K(S^1)$ , where  $\pi : \mathbb{R}^3 \rightarrow P$  is a projection onto some plane  $P$ .

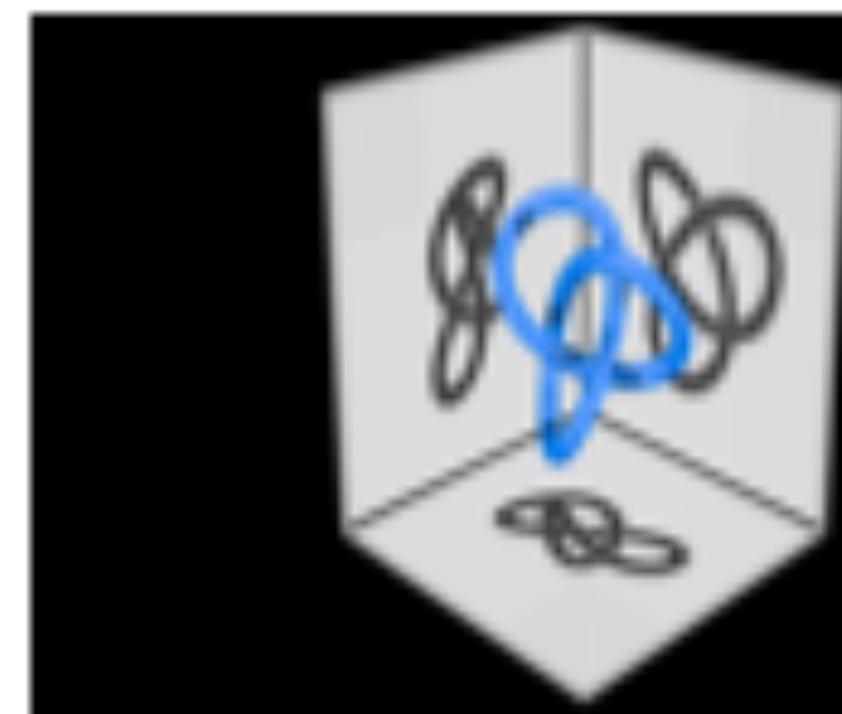
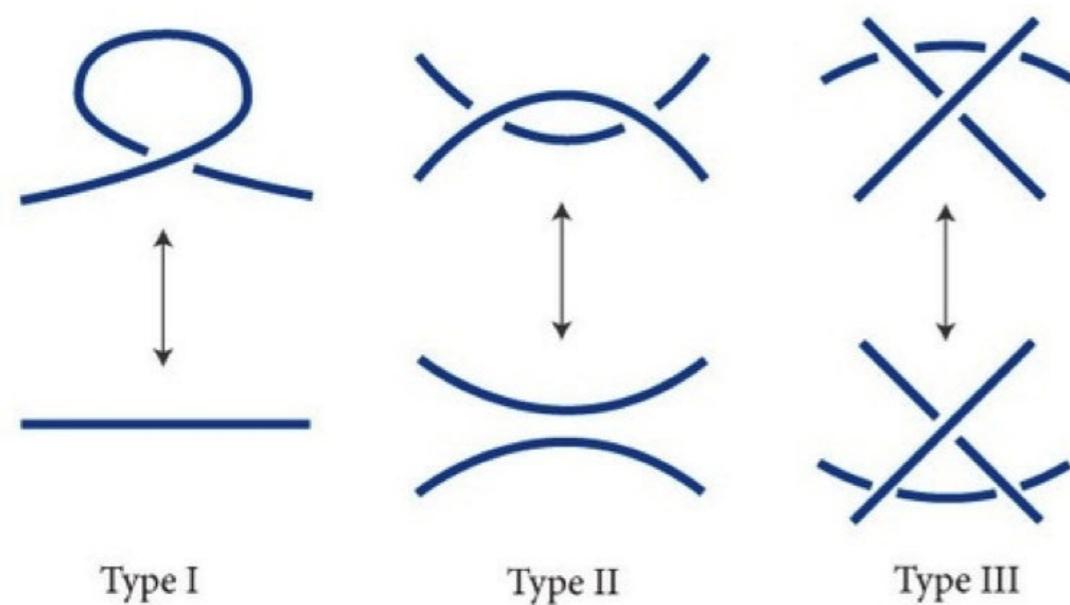


Figure: Trefoil projection.

# Reidemeister and $\Delta$ -moves

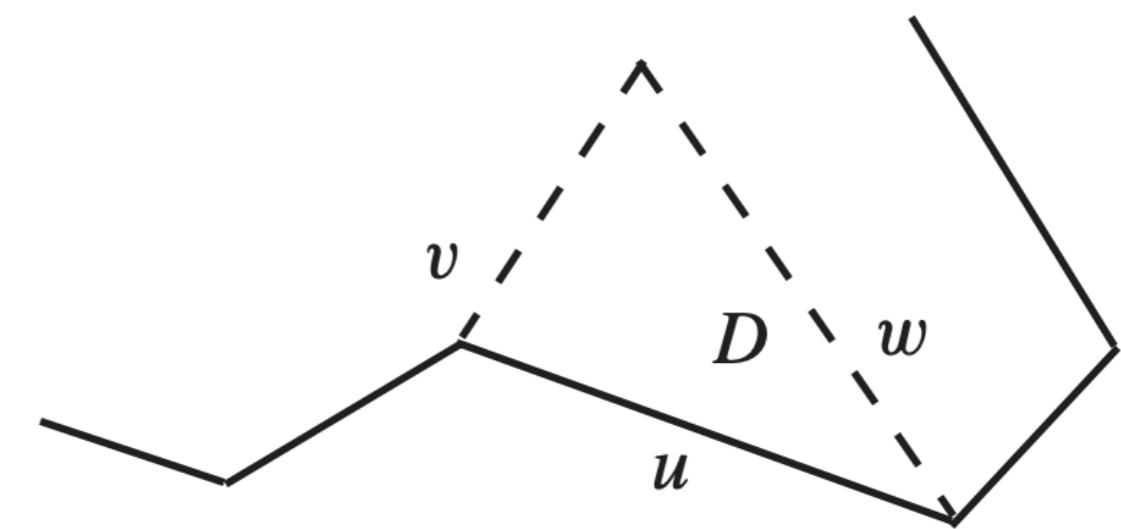


Type I

Type II

Type III

**Figure:** Reidemeister moves.



**Figure:**  $\Delta$ -moves.

## Theorem

Let  $K_0, K_1$  be p.l.-knots in  $S^3$ . The following are equivalent:

- ① There is an orientation preserving homeomorphism  $h : S^3 \rightarrow S^3$  which carries  $K_0$  onto  $K_1$ ,  $h(K_0) = K_1$ .
- ②  $K_0$  and  $K_1$  are ambient isotopic.
- ③  $K_0$  and  $K_1$  are isotopic by finitely many  $\Delta$ -moves.
- ④  $K_0$  and  $K_1$  are isotopic by finitely many Reidemeister moves.

## Theorem

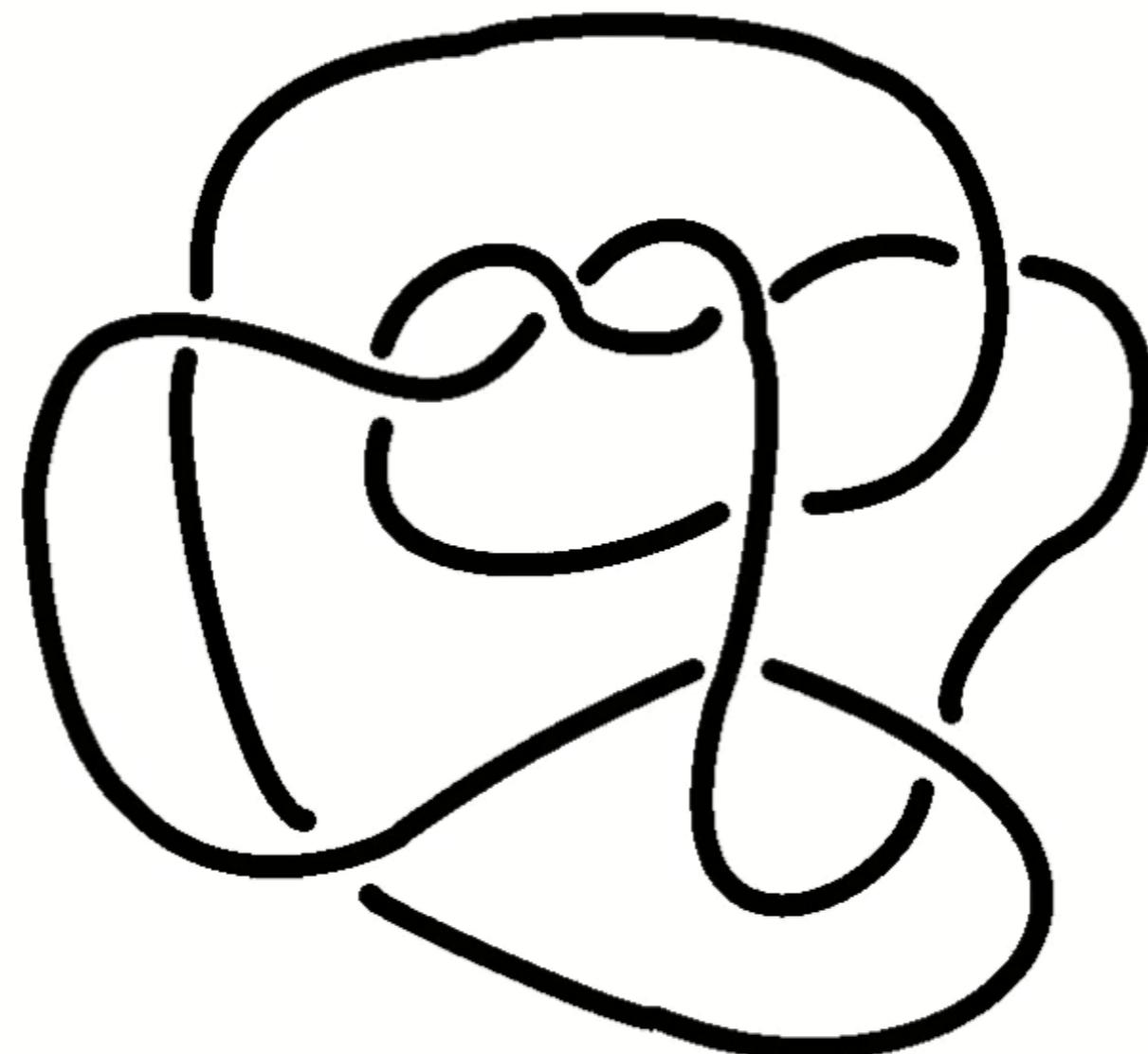
Let  $K_0, K_1$  be p.l.-knots in  $S^3$ . The following are equivalent:

- 1 There is an orientation preserving homeomorphism  $h : S^3 \rightarrow S^3$  which carries  $K_0$  onto  $K_1$ ,  $h(K_0) = K_1$ .
- 2  $K_0$  and  $K_1$  are ambient isotopic.
- 3  $K_0$  and  $K_1$  are isotopic by finitely many  $\Delta$ -moves.
- 4  $K_0$  and  $K_1$  are isotopic by finitely many Reidemeister moves.

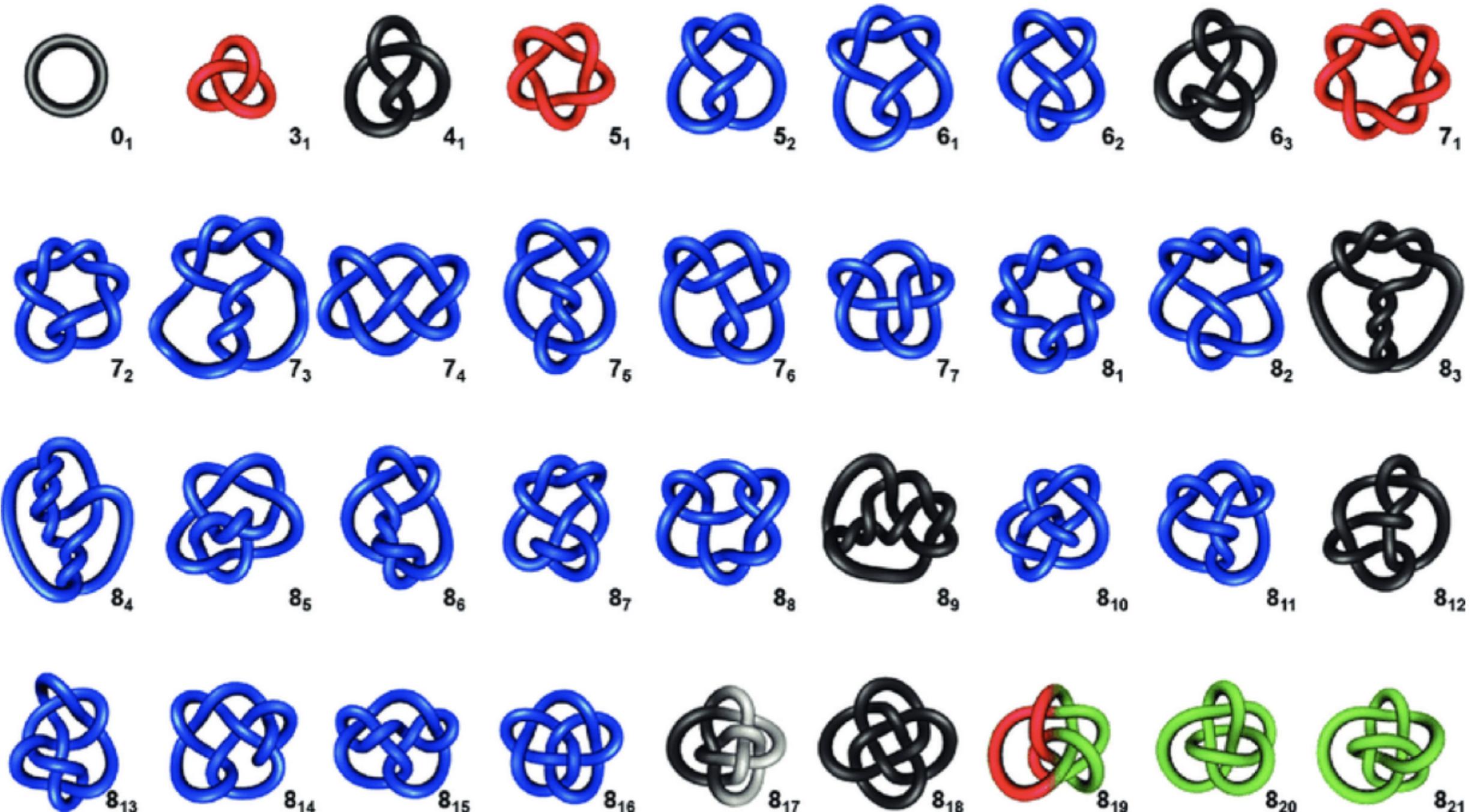
## Theorem (Lickorish-Wallace 1960, 1962, 1963)

Let  $M$  be an orientable, closed, connected 3-manifold. Then  $M$  is obtained by surgery on some link  $K$  in  $S^3$ .

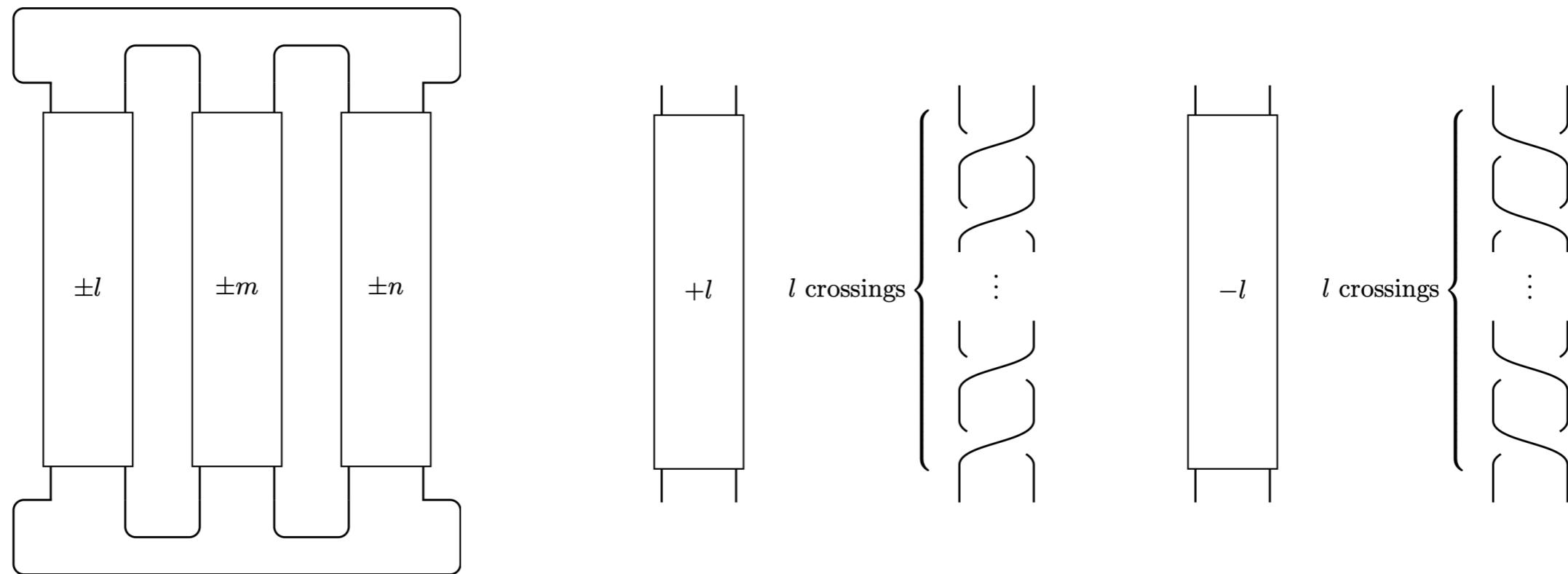
# Can you detect the unknot?



# Knots with less than 9 crossings

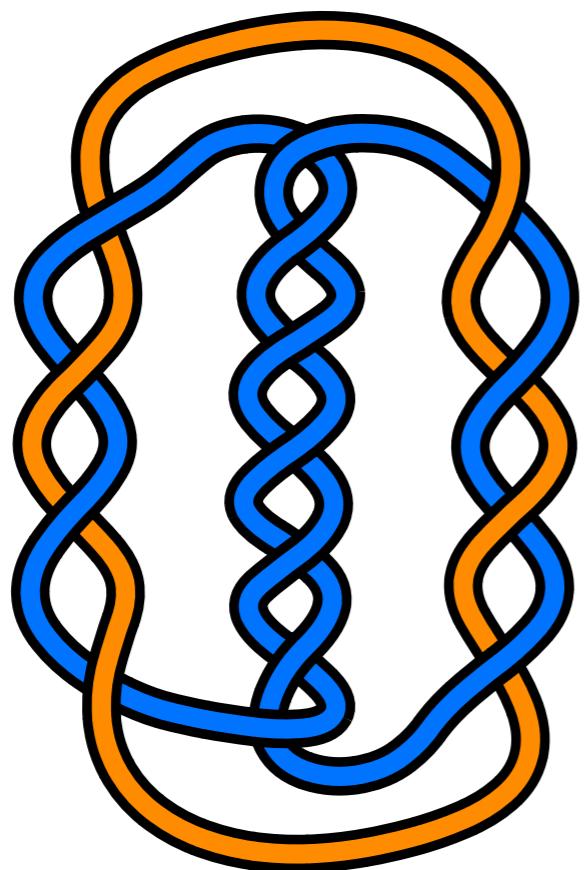


# Pretzel knot $P(\pm l, \pm m, \pm n)$

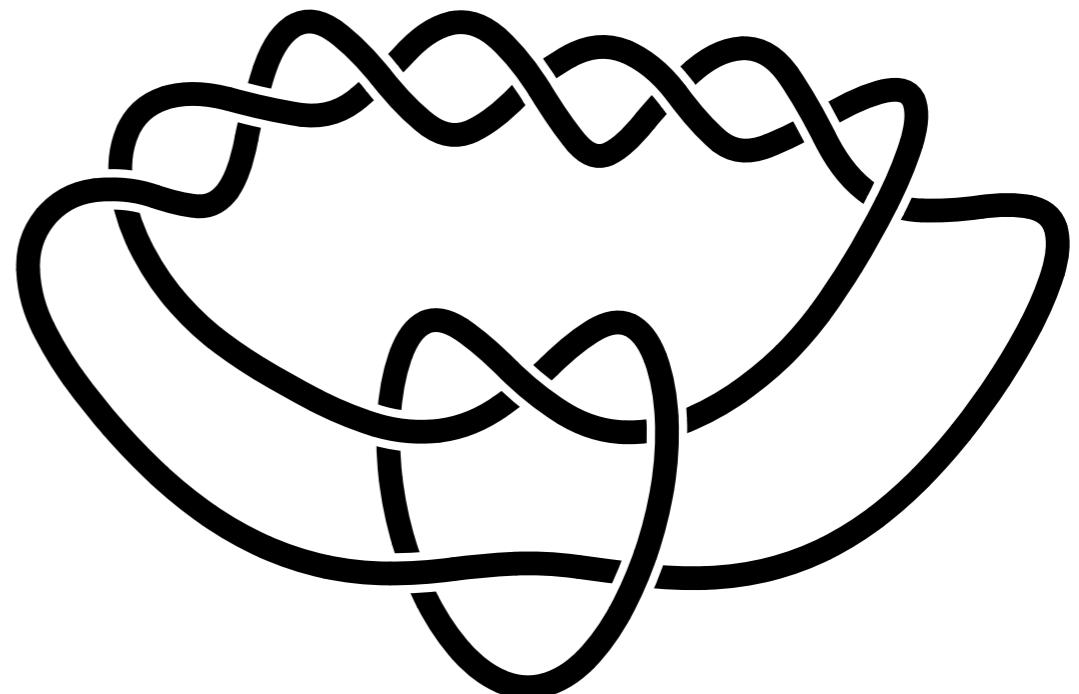


**Figure:** The pretzel knot  $P(\pm l, \pm m, \pm n)$  with  $l, m, n > 0$ .

# Pretzels I

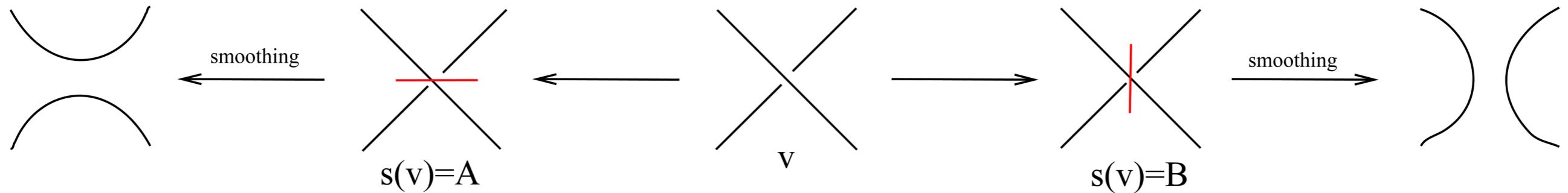


**Figure:**  $P(4, 7, 4)$ .

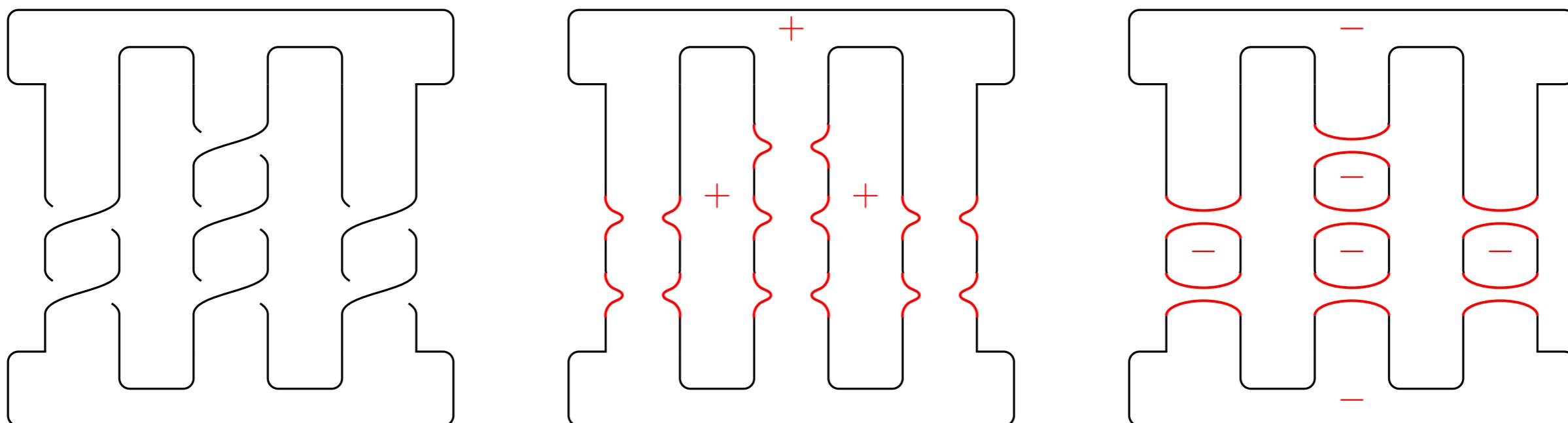


**Figure:**  $P(-2, 3, 7)$ .

# Pretzels II



**Figure:** Markers at a crossing  $v$  of  $D$  and their corresponding smoothing.



**Figure:**  $P(2,3,2)$  and its  $S_A$  and  $S_B$  EKS's.

UPR

# Pretzels III

The following knots up to 9 crossings are three column pretzels. See [Diaz, Manchón].

$$3_1 = P(1, 1, 1)$$

$$4_1 = P(1, 1, 2)$$

$$5_2 = P(1, 1, 3)$$

$$6_1 = P(1, 1, 4)$$

$$6_2 = P(1, 2, 3)$$

$$7_2 = P(5, 1, 1)$$

$$7_4 = P(3, 1, 3)$$

$$8_1 = P(1, 1, 6)$$

$$8_2 = P(1, 2, 5)$$

$$8_4 = P(1, 3, 4)$$

$$8_5 = P(2, 3, 3)$$

$$8_{19} = P(3, 3, -2)$$

$$9_2 = P(1, 1, 7)$$

$$9_3 = P(1, -4, 5)$$

$$9_4 = P(1, -5, 4)$$

$$9_5 = P(1, 3, 5)$$

$$9_{35} = P(3, 3, 3)$$

$$9_{46} = P(3, 3, -3)$$

$8_{19} = P(3, 3, -2) = T(4, 3)$  and  $10_{124} = P(5, 3, -2) = T(5, 3)$  are three column pretzel knots that are also torus knots.

# Table of Contents

## 1 n-Manifolds

- Definition
- Results in low dimension (n=2, 3)
- Grigori Perelman

## 2 Knot theory

- Definition
- Equivalence of Knots
- Knot Table
- Pretzel knots

## 3 Khovanov homology (KH)

- Free Abelian groups
- Khovanov Homology chain complex
- KH long exact sequence
- KH of the knot  $P(1, 1, 7)$

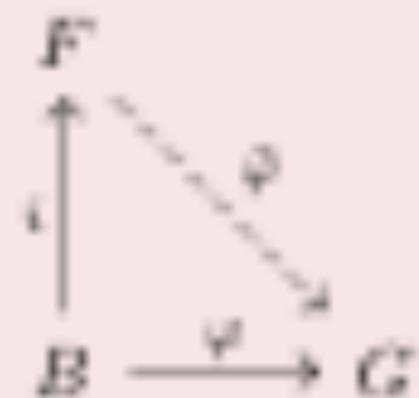
Given a set  $T$ , there is a free Abelian group  $F$  having  $T$  as its base. Any two bases for the free Abelian group  $F$  have the same cardinality.

Given a set  $T$ , there is a free Abelian group  $F$  having  $T$  as its base. Any two bases for the free Abelian group  $F$  have the same cardinality.

### Theorem

Let  $F$  be a free Abelian group with base  $B$ .

- If  $G$  is an Abelian group and  $\varphi : B \rightarrow G$  is a function, then there is a unique homomorphism  $\tilde{\varphi} : F \rightarrow G$  with  $\tilde{\varphi}(b) = \varphi(b)$  for all  $b \in B$ .



- Every Abelian group  $G$  is isomorphic to a quotient group of the form  $F/R$ , where  $F$  is a free Abelian group.

## Examples

Let  $T = \{\otimes, \oplus, \%, \&\}$ . The elements of  $F[T]$ , the free group with base  $T$ , have the form

$$\alpha = 2\otimes + 4\oplus + 3\% - 5\& \quad \beta = 3\otimes - 4\oplus + \% \quad \gamma = 8\otimes + 9\oplus + 10\% + 11\&.$$

Sumation is done formally, for example

$$\alpha + \beta + \gamma = 13\otimes + 9\oplus + 14\% + 10\&.$$

A typical element  $\sigma$  of  $F[T]$  has the form

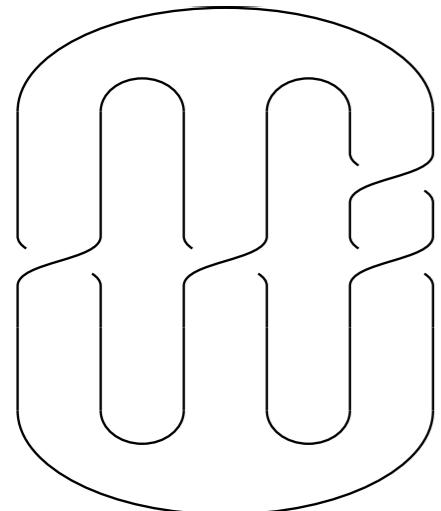
$$\sigma = n_1 \otimes + n_2 \oplus + n_3 \% + n_4 \&$$

where  $n_1, n_2, n_3, n_4$  are integers. Here  $F[T] \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ .



# Free Abelian groups IV

# Enhanced Kauffman states (EKS) for $P(1, 1, 2) = 4_1$



$$\left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right. \quad \left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right.$$

AAAB                            AABA

$$\left\{ \begin{array}{l} + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \end{array} \right. \quad \left. \begin{array}{l} + \\ + \\ - \\ - \\ + \\ + \\ - \\ - \end{array} \right. \quad \left. \begin{array}{l} + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \end{array} \right. \quad \left. \begin{array}{l} + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \end{array} \right.$$

$$\left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right. \quad \left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right.$$

$$\left\{ \begin{array}{l} + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \end{array} \right. \quad \left. \begin{array}{l} + \\ + \\ - \\ - \\ + \\ + \\ + \\ - \\ - \end{array} \right. \quad \left. \begin{array}{l} + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ + \end{array} \right. \quad \left. \begin{array}{l} + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ + \end{array} \right.$$

$$\left\{ \begin{array}{c} + \\ - \end{array} \right. \quad \left\{ \begin{array}{c} + \\ - \end{array} \right.$$

$$\left\{ \begin{array}{l} + \\ - \end{array} \right. \quad \left\{ \begin{array}{l} + \\ - \end{array} \right. \quad \left\{ \begin{array}{l} + \\ - \end{array} \right.$$

$$\left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right. \quad \left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right.$$

$$\left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right. \quad \left\{ \begin{array}{cc} + & + \\ + & - \\ - & + \\ - & - \end{array} \right.$$

$$\left. \begin{array}{c} + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \end{array} \right\} \quad \left. \begin{array}{c} + \\ + \\ - \\ - \\ + \\ + \\ - \\ - \\ - \end{array} \right\} \quad \left. \begin{array}{c} + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ - \end{array} \right\}$$

# UPRIGHT

# O. Viro's $(a, b)$ bigrading

For each EKS, we define the following:

$$\begin{aligned}\sigma(s) &= |s^{-1}(A)| - |s^{-1}(B)| \\ \tau(S) &= |\varepsilon^{-1}(+)| - |\varepsilon^{-1}(-)| \\ a &= \sigma(s) \\ b &= \sigma(s) + 2\tau(S)\end{aligned}$$

**Table:** Some generators of the chain groups with the  $(a, b)$  grading

| $S$     | $\sigma$ | $\tau$ | $a$ | $b$ | generator        |
|---------|----------|--------|-----|-----|------------------|
| AAAA+++ | 4        | 3      | 4   | 10  | $g_{(4,10)}^1$   |
| AAAA+-- | 4        | -1     | 4   | 2   | $g_{(4,2)}^2$    |
| ABBA+   | 0        | 1      | 0   | 2   | $g_{(0,2)}^3$    |
| BAAB-   | 0        | -1     | 0   | -2  | $g_{(0,-2)}^4$   |
| BBAA-   | 0        | -1     | 0   | -2  | $g_{(0,-2)}^5$   |
| BBBB--- | -4       | -3     | -4  | -10 | $g_{(-4,-10)}^6$ |

### Definition

Let  $D$  be an unoriented link diagram and let  $\text{cr}(D)$  be its crossings set. A Kauffman state  $s$ , of  $D$ , is a function  $s : \text{cr}(D) \rightarrow \{A, B\}$ . This function is understood as an assignment of a marker to each crossing according to the following illustration:



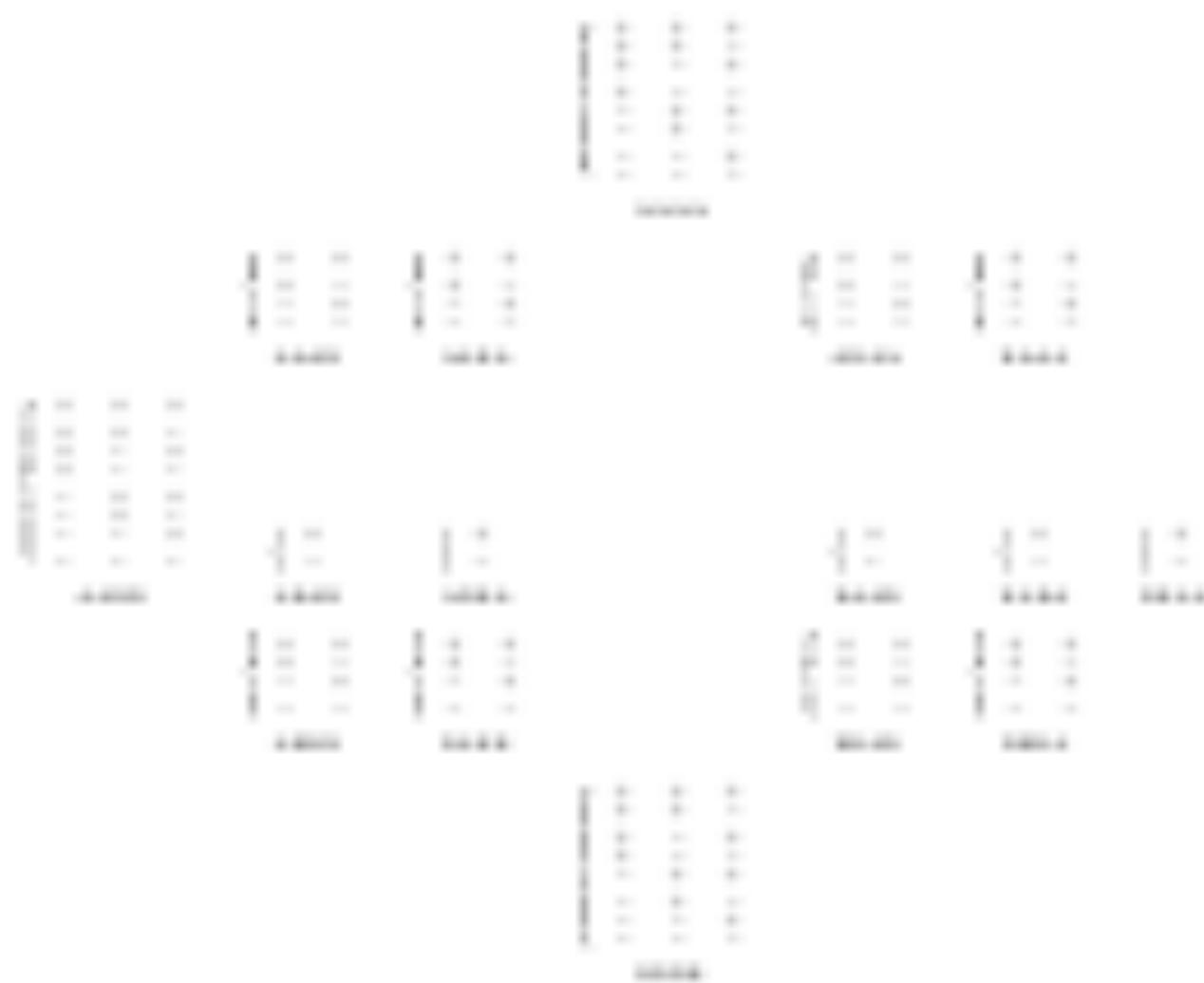
**Figure:** Markers at a crossing  $v$  of  $D$  and their corresponding smoothing.

## Definition

An **enhanced Kauffman state**  $S$  of  $D$  is a Kauffman state  $s$  together with a function  $\varepsilon : D_s \rightarrow \{+, -\}$ , assigning to each circle of  $D_s$  a positive or a negative sign.

### Definition

An enhanced Kauffman state  $S$  of  $D$  is a Kauffman state  $s$  together with a function  $\varepsilon : D_s \rightarrow \{+, -\}$ , assigning to each circle of  $D_s$  a positive or a negative sign.



### Definition

(i) The bidegree on the enhanced Kauffman states is defined as the following set:

$$S_{a,b}(D) = S_{a,b} = \{S \in EKS \mid a = \sigma(s), b = \sigma(s) + 2\tau(S)\}.$$

(ii) The chain groups  $C_{a,b}(D) = C_{a,b}$ , are defined to be the free abelian groups with basis  $S_{a,b}(D) = S_{a,b}$ , i.e.  $C_{a,b} = \mathbb{Z}S_{a,b}$ . Therefore,

$\mathcal{C}(D) = \bigoplus_{a,b \in \mathbb{Z}} \mathcal{C}_{a,b}(D)$  is a bigraded free abelian group.

(iii) For a link diagram  $D$  we define the **chain complex**  $C(D) = \{(C_{a,b}, \partial_{a,b})\}$ , where the differential map  $\partial_{a,b} : C_{a,b} \rightarrow C_{a-2,b}$  is defined by

$$\partial_{a,b}(S) = \sum_{S' \in \mathcal{S}_{a+2,b}} (-1)^{\ell(S,S')} (S, S') S'.$$

## Definition

The Khovanov homology of the diagram  $D$  is defined to be the homology of the chain complex  $C(D)$ :

$$H_{a,b}(D) = \frac{\ker(\partial_{a,b})}{\text{im}(\partial_{a+2,b})}.$$

## Definition

The Khovanov homology of the diagram  $D$  is defined to be the homology of the chain complex  $C(D)$ :

$$H_{a,b}(D) = \frac{\ker(\partial_{a,b})}{\text{im}(\partial_{a+2,b})}.$$

## Theorem

Let  $D$  be an unoriented link diagram. The homology groups  $H_{a,b}(D)$  are invariant under Reidemeister moves of second and third type. Therefore, they are invariants of unoriented framed links. Moreover, the effect of the first Reidemeister move  $R_1$ , is the shift in the homology:  $H_{a,b}(R_1+(D)) = H_{a+1,b+1}(D)$  and  $H_{a,b}(R_1-(D)) = H_{a-1,b-1}(D)$ . These groups categorify the unreduced Kauffman bracket polynomial and are called the framed Khovanov homology groups.

## Theorem (O. Viro 2002)

The following sequence is exact:

$$\begin{aligned} & \cdots \longrightarrow H_{a+1,b+1}(\mathbb{X}) \xrightarrow{\alpha_*} H_{a,b}(\mathbb{X}) \xrightarrow{\beta_*} H_{a-1,b-1}(\mathbb{X}) \\ & \xrightarrow{(\partial_{a,b}^{\text{Conn}})_*} H_{a-1,b+1}(\mathbb{X}) \xrightarrow{\alpha_*} H_{a-2,b}(\mathbb{X}) \xrightarrow{\beta_*} H_{a-3,b-1}(\mathbb{X}) \quad (1) \\ & \xrightarrow{(\partial_{a,b}^{\text{Conn}})_*} H_{a-3,b+1}(\mathbb{X}) \xrightarrow{\alpha_*} H_{a-4,b}(\mathbb{X}) \xrightarrow{\beta_*} \cdots. \end{aligned}$$

Theorem (M. M. Asaeda, J. H. Przytycki 2004)

The following sequence is exact

$$0 \rightarrow H_{i+2,j+4}(D) \xrightarrow{\alpha_i} H_{i,j}(D \# D_b) \xrightarrow{\beta_i} H_{i-2,j-4}(D) \rightarrow 0$$

Theorem (M. M. Asaeda, J. H. Przytycki 2004)

The above short exact sequence of homology splits, so we have

$$H_{i,j}(D \# D_\Lambda) = H_{i+2,j+4}(D) \oplus H_{i-2,j-4}(D)$$



## Theorem (E.S. Lee 2002)

For any alternating knot  $L$ , the Khovanov invariants  $\mathcal{H}^{i,j}(L)$  of  $L$  are supported in two lines

$$j = 2i - \sigma(L) \pm 1,$$

where  $\sigma(L)$  is the signature of  $L$ .

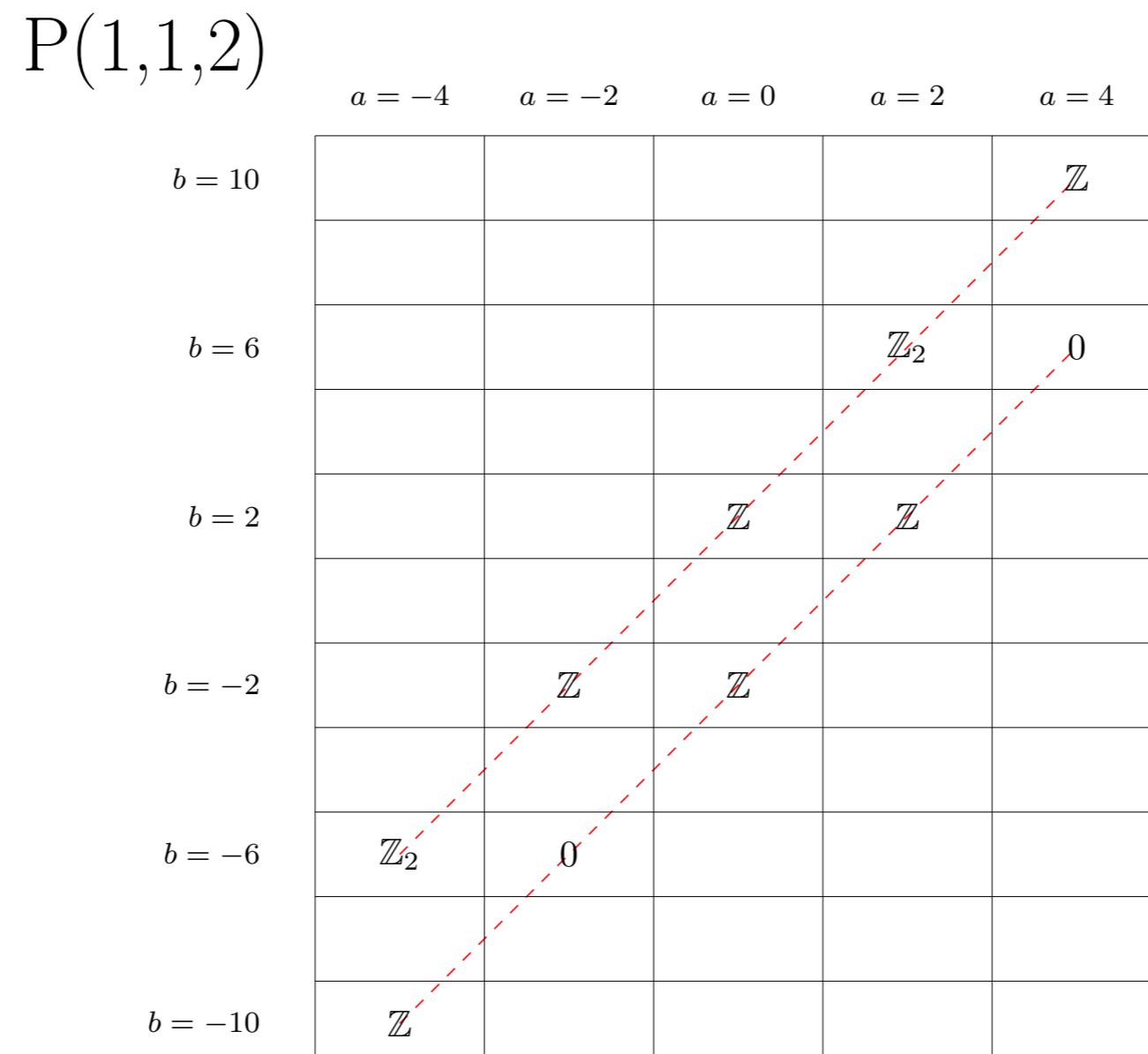
Since the classical Khovanov cohomology  $\mathcal{H}^{i,j}(\vec{L})$ , and the framed version of KH  $H_{a,b}(L)$ , are related by the following equalities:

$$\mathcal{H}^{i,j}(\vec{L}) = H_{w-2i, 3w-2j}(L) = H_{a,b}(L) = \mathcal{H}^{\frac{w-a}{2}, \frac{2w-b}{2}}(\vec{L}),$$

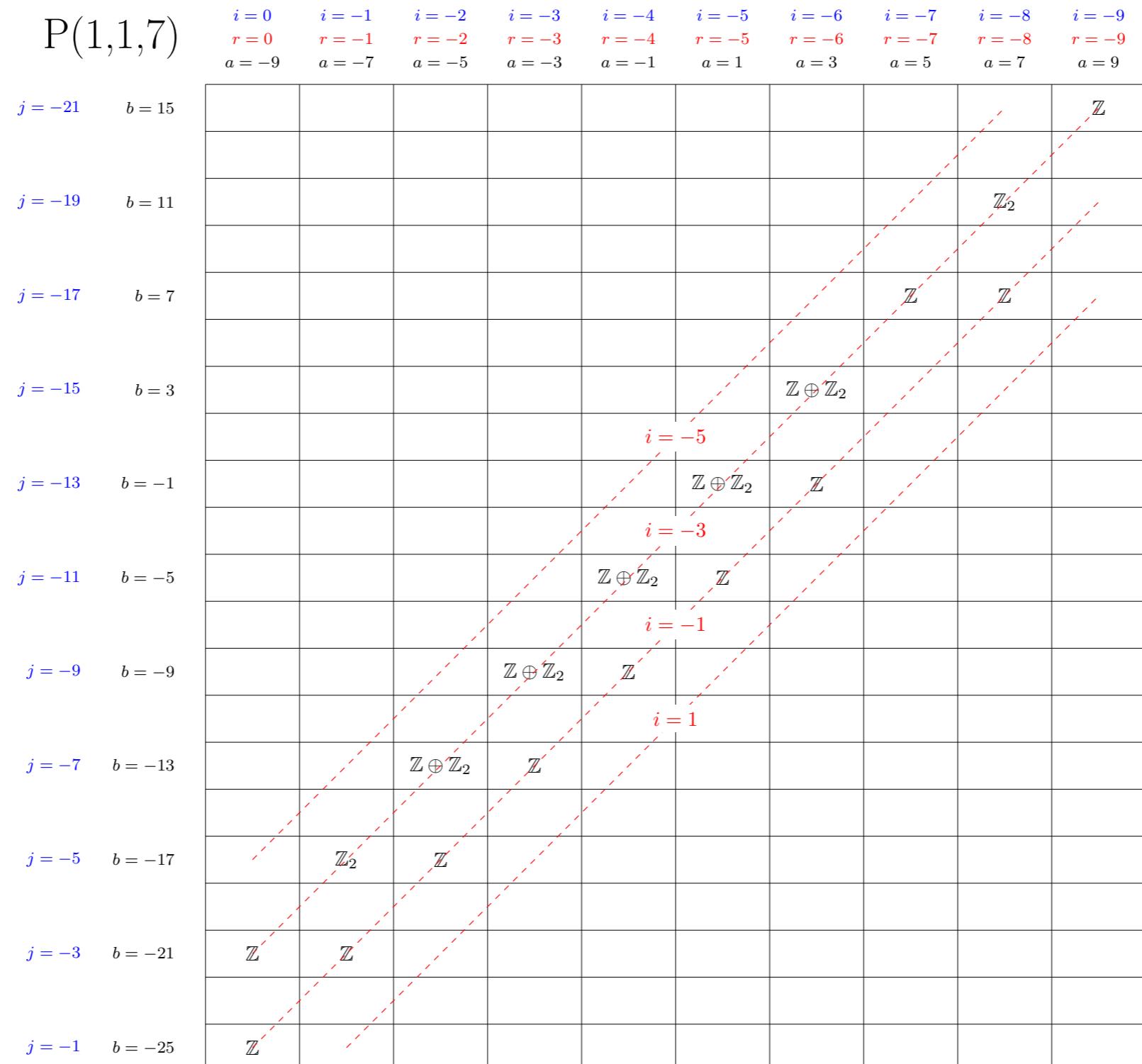
where  $w(\vec{L}) = w$  is the writhe of the oriented link diagram  $\vec{L}$ , in terms of the framed version of KH and the  $(a, b)$  grading, these supporting lines are

$$b = 2a + w(\vec{L}) + 2\sigma(L) \pm 2.$$

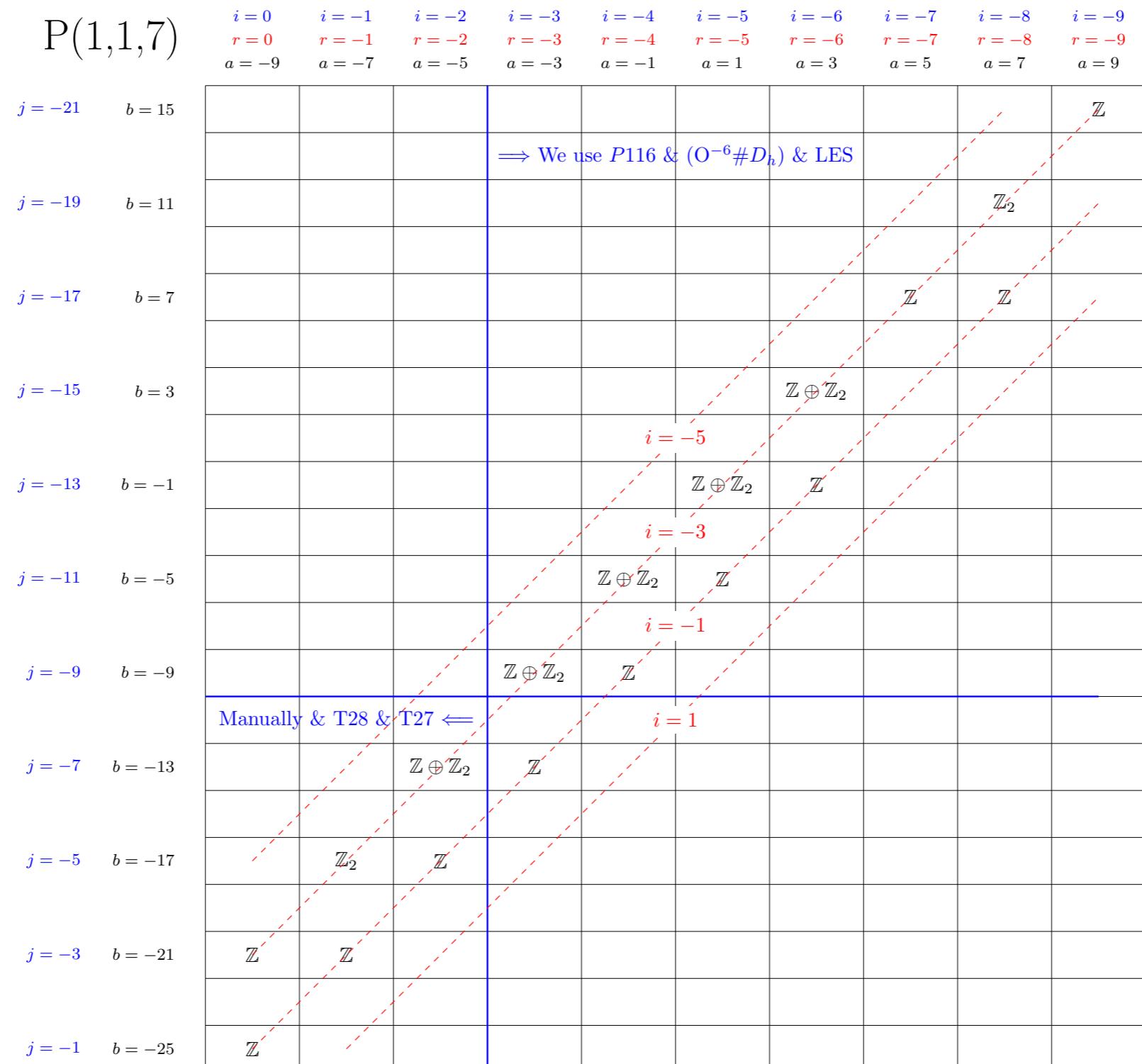
KH of the knot  $4_1 = P(1, 1, 2)$



# KH of the knot $P(1, 1, 7)$



# KH of the knot $P(1, 1, 7)$



# KH detects the unknot

Khovanov homology detects:

- the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)

# KH detects the unknot

Khovanov homology detects:

- the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
- the trefoils (J. A. Baldwin and S. Sivek, 2018)

# KH detects the unknot

Khovanov homology detects:

- the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
- the trefoils (J. A. Baldwin and S. Sivek, 2018)
- the Hopf links (J. A. Baldwin, S. Sivek, Y. Xie, 2018)

# KH detects the unknot

Khovanov homology detects:

- the unknot (P. B. Kronheimer and T. S. Mrowka, 2010)
- the trefoils (J. A. Baldwin and S. Sivek, 2018)
- the Hopf links (J. A. Baldwin, S. Sivek, Y. Xie, 2018)
- the figure 8 knot  $4_1 = P(1, 1, 2)$  (J. A. Baldwin, N. Dowlin, A. S. Levine, T. Lidman, R. Sazdanovic, 2020)



Thanks for you time.